
4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 1/14

Positional Parameters
When we last left our script, it looked something like this:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{
 echo "<h2>System release info</h2>"
 echo "<p>Function not yet implemented</p>"

} # end of system_info

Validation failed. Please retry or wait till
W3C allows validation again

X

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 2/14

show_uptime()
{
 echo "<h2>System uptime</h2>"
 echo "<pre>"
 uptime
 echo "</pre>"

} # end of show_uptime

drive_space()
{
 echo "<h2>Filesystem space</h2>"
 echo "<pre>"
 df
 echo "</pre>"

} # end of drive_space

home_space()
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 3/14

} # end of home_space

Main

cat <<- _EOF_
 <html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

We have most things working, but there are several more features I want to add:

1. I want to specify the name of the output file on the command line, as well as set a default
output file name if no name is specified.

2. I want to offer an interactive mode that will prompt for a file name and warn the user if the

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 4/14

file exists and prompt the user to overwrite it.

3. Naturally, we want to have a help option that will display a usage message.

All of these features involve using command line options and arguments. To handle options on
the command line, we use a facility in the shell called positional parameters. Positional
parameters are a series of special variables ($0 through $9) that contain the contents of the
command line.

Let's imagine the following command line:

[me@linuxbox me]$ some_program word1 word2 word3

If some_program were a bash shell script, we could read each item on the command line
because the positional parameters contain the following:

$0 would contain "some_program"
$1 would contain "word1"
$2 would contain "word2"
$3 would contain "word3"

Here is a script you can use to try this out:

#!/bin/bash

echo "Positional Parameters"

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 5/14

echo '$0 = ' $0
echo '$1 = ' $1
echo '$2 = ' $2
echo '$3 = ' $3

Detecting Command Line Arguments
Often, you will want to check to see if you have arguments on which to act. There are a couple
of ways to do this. First, you could simply check to see if $1 contains anything like so:

#!/bin/bash

if ["$1" != ""]; then
 echo "Positional parameter 1 contains something"
else
 echo "Positional parameter 1 is empty"
fi

Second, the shell maintains a variable called $# that contains the number of items on the
command line in addition to the name of the command ($0).

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 6/14

#!/bin/bash

if [$# -gt 0]; then
 echo "Your command line contains $# arguments"
else
 echo "Your command line contains no arguments"
fi

Command Line Options
As we discussed before, many programs, particularly ones from the GNU Project, support both
short and long command line options. For example, to display a help message for many of
these programs, you may use either the "-h" option or the longer "--help" option. Long option
names are typically preceded by a double dash. We will adopt this convention for our scripts.

Here is the code we will use to process our command line:

interactive=
filename=~/sysinfo_page.html

while ["$1" != ""]; do
 case $1 in
 -f | --file) shift
 filename=$1

http://www.gnu.org/

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 7/14

 ;;
 -i | --interactive) interactive=1
 ;;
 -h | --help) usage
 exit
 ;;
 *) usage
 exit 1
 esac
 shift
done

This code is a little tricky, so bear with me as I attempt to explain it.

The first two lines are pretty easy. We set the variable interactive to be empty. This will
indicate that the interactive mode has not been requested. Then we set the variable filename
to contain a default file name. If nothing else is specified on the command line, this file name
will be used.

After these two variables are set, we have default settings, in case the user does not specify
any options.

Next, we construct a while loop that will cycle through all the items on the command line and
process each one with case. The case will detect each possible option and process it
accordingly.

Now the tricky part. How does that loop work? It relies on the magic of shift.

shift is a shell builtin that operates on the positional parameters. Each time you invoke

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 8/14

shift, it "shifts" all the positional parameters down by one. $2 becomes $1, $3 becomes $2,
$4 becomes $3, and so on. Try this:

#!/bin/bash

echo "You start with $# positional parameters"

Loop until all parameters are used up
while ["$1" != ""]; do
 echo "Parameter 1 equals $1"
 echo "You now have $# positional parameters"

 # Shift all the parameters down by one
 shift

done

Getting An Option's Argument
Our "-f" option requires a valid file name as an argument. We use shift again to get the next
item from the command line and assign it to filename. Later we will have to check the content
of filename to make sure it is valid.

Integrating The Command Line Processor Into The Script

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 9/14

We will have to move a few things around and add a usage function to get this new routine
integrated into our script. We'll also add some test code to verify that the command line
processor is working correctly. Our script now looks like this:

#!/bin/bash

sysinfo_page - A script to produce a system information HTML file

Constants

TITLE="System Information for $HOSTNAME"
RIGHT_NOW=$(date +"%x %r %Z")
TIME_STAMP="Updated on $RIGHT_NOW by $USER"

Functions

system_info()
{
 echo "<h2>System release info</h2>"
 echo "<p>Function not yet implemented</p>"

} # end of system_info

show_uptime()
{
 echo "<h2>System uptime</h2>"
 echo "<pre>"
 uptime
 echo "</pre>"

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 10/14

} # end of show_uptime

drive_space()
{
 echo "<h2>Filesystem space</h2>"
 echo "<pre>"
 df
 echo "</pre>"

} # end of drive_space

home_space()
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

write_page()
{
 cat <<- _EOF_

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 11/14

 <html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 <p>$TIME_STAMP</p>
 $(system_info)
 $(show_uptime)
 $(drive_space)
 $(home_space)
 </body>
 </html>
EOF

}

usage()
{
 echo "usage: sysinfo_page [[[-f file] [-i]] | [-h]]"
}

Main

interactive=
filename=~/sysinfo_page.html

while ["$1" != ""]; do
 case $1 in
 -f | --file) shift
 filename=$1

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 12/14

 ;;
 -i | --interactive) interactive=1
 ;;
 -h | --help) usage
 exit
 ;;
 *) usage
 exit 1
 esac
 shift
done

Test code to verify command line processing

if ["$interactive" = "1"]; then
 echo "interactive is on"
else
 echo "interactive is off"
fi
echo "output file = $filename"

Write page (comment out until testing is complete)

write_page > $filename

Adding Interactive Mode

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 13/14

The interactive mode is implemented with the following code:

if ["$interactive" = "1"]; then

 response=

 echo -n "Enter name of output file [$filename] > "
 read response
 if [-n "$response"]; then
 filename=$response
 fi

 if [-f $filename]; then
 echo -n "Output file exists. Overwrite? (y/n) > "
 read response
 if ["$response" != "y"]; then
 echo "Exiting program."
 exit 1
 fi
 fi
fi

First, we check if the interactive mode is on, otherwise we don't have anything to do. Next, we
ask the user for the file name. Notice the way the prompt is worded:

4/2/2015 Writing shell scripts - Lesson 12: Positional Parameters

http://linuxcommand.org/lc3_wss0120.php 14/14

echo -n "Enter name of output file [$filename] > "

We display the current value of filename since, the way this routine is coded, if the user just
presses the enter key, the default value of filename will be used. This is accomplished in the
next two lines where the value of response is checked. If response is not empty, then
filename is assigned the value of response. Otherwise, filename is left unchanged,
preserving its default value.

After we have the name of the output file, we check if it already exists. If it does, we prompt the
user. If the user response is not "y," we give up and exit, otherwise we can proceed.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

